
Abstract—Control methods of stand-alone doubly fed 

induction generator mostly use either proportional-integral 

regulators in multiple synchronous reference frames or 

proportional-integral-resonant regulators in a stationary 

reference frame. These control schemes work well when the plant 

model is not complex and system decoupling is implemented into 

the control algorithm. However, when the control system 

contains multiple resonant terms in order to compensate high 

harmonics of load current, tuning of many regulators in different 

coordinate systems becomes problematic. The paper presents 

application of a linear-quadratic regulator and a rotor position 

observer in sensorless control of stand-alone doubly fed induction 

generator supplying nonlinear and unbalanced loads. 

Cooperation of the observer and state controller has been 

validated in the laboratory experiment. An anti-windup 

mechanism has been implemented into the resonant terms and it 

has been shown, that the anti-windup structure is crucial for high 

performance of the state controller with resonant terms. Further 

research on observers based on a model reference adaptive 

system scheme is done in the paper. 

 

Index Terms—doubly fed induction generator, linear-

quadratic control, unbalanced load, nonlinear load, sensorless 

control. 

 

I. INTRODUCTION 

N micropower systems variable-speed generators can 

significantly increase power conversion efficiency due to 

possibility of adjusting speed of the prime mover to 

instantaneous load. Autonomous generation systems are 

driven mostly by either a combustion engine or a gas turbine 

in order to guarantee uninterruptable power supply. Many 

hybrid generation systems that combine advantages of 

renewable energy sources with good properties of 

conventional energy sources have also been proposed, e.g. in 

[1], [2]. Considerable reduction of both fuel consumption and 

pollution emission can be achieved in combustion engines by 

adjusting their speed to instantaneous load [3]. Although 

constantly decreasing prices of power converters reduce 

attractiveness of the doubly fed induction generator DFIG as 

variable-speed generator system, this topology is still worth 

paying attention in high power systems. 

Although grid-connected operation of DFIG seems to be 

a mature technology, stand-alone operation is still analyzed 

unsatisfactorily thoroughly. DFIG operation with either 

nonlinear or unbalanced loads is described only in a few 

papers [4]–[9]. Moreover, dominating control schemes for 

the stand-alone DFIG – either multiple-synchronous reference 

frames or stationary reference frame control with proportional-

integral-resonant regulators – are tuned using tiresome trial-

and-error method due to lack of any accepted analytical tuning 

methods. Multiple-synchronous reference frames control is 

very problematic under tuning due to large quantity of 

dynamic terms (filters and regulators) which are implemented 

in different coordinate systems. In order to control microgrid 

voltage, it is not necessary to implement so many dynamic 

terms according to the Internal Model Principle. Moreover, 

a plant model of stand-alone DFIG system can be quite 

complex due to inductive-capacitive LC output filters, which 

aim is to reduce high harmonics and partially deliver reactive 

power for magnetization of the machine. Recently, traditional 

linear-quadratic regulator has gained popularity in grid-

connected converters [10]–[12], but it is still not used in 

control of generators. 

Sensorless control (operation without speed and position 

sensors) is seen as a very attractive feature, because popularly 

used encoders are fragile instrumentation, especially 

susceptible to vibrations produced by the prime energy source 

(e.g. a wind turbine or a combustion engine). Unfortunately, 

position and speed observers degrade generator performance, 

because current control is based on coordinate system 

transformations using the rotor angle. Speed and position 

observers based on a model reference adaptive system with 

a phase-locked loop MRAS-PLL have become popular in 

DFIG systems. MRAS-PLL in DFIG application has been 

presented in [13] firstly, but then developed in many papers, 

e.g. [14]–[20]. Most ideas to improve original concept of 

MRAS-PLL concern dynamic models being synchronized and 

regulator structures used for the synchronization. In [20] there 

are presented PLLs of rotor flux, stator flux, stator current and 

rotor current. In [15] it is presented MRAS observer based on 

torque calculation from two different models, in [19] rotor 

position is estimated using pq powers. In [18] it is raised 

a subject of synchronization error function, which is usually 

vector cross product. Authors of [18] propose normalization of 

the cross product and also using the function atan2 to 

determine the vector synchronization error. Interesting 

sensorless DFIG control without any PLL is presented in [14]. 

PLL structure can also be incorporated into the generator 

output voltage control to obtain sensorless system, as it is 
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proposed in [21]. 

In this paper it is proposed state control of stand-alone 

DFIG using a linear-quadratic regulator LQR with multiple 

resonant terms. It is implemented anti-windup of resonant 

terms, which allows the controlled system to stably operate 

even after temporary rotor voltage limitation. Anti-windup of 

resonant terms is rarely implemented by other authors using 

proportional-resonant regulators (e.g. [22]) to control of power 

converters, but anti-windup should be considered as 

an essential element in these control schemes, similarly as it is 

treated in proportional-integral PI regulators. Sensorless 

operation of the presented state controller is validated and 

a few new modifications of MRAS-PLL observer are 

introduced. The proposed control method has been tested in 

the laboratory rig containing a small-power DFIG. 

II. CONTROL STRATEGY 

A. DFIG and disturbance models 

Control design starts from creating an adequate plant model 

of the experimental set-up (Fig. 1), which contains a DFIG 

model [23], a model of filtering capacitors and a disturbance 

model (called also the internal model). In the paper it is 

considered only the rotor-side converter, because it is 

responsible for stator voltage stabilization. Load-side 

converter acts as an active filter/rectifier, which has been 

described quite thoroughly in the literature [24]–[26], so it will 

be not described in this paper. 
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Fig. 1. Schematic model of the prototype stand-alone DFIG system. 

 

Physical system dynamics is described by matrixes A and B 

and represented by the state vector xf, whereas auxiliary state 

vector xd stores information about unmodeled disturbances, 

which are reference voltage and load current. Auxiliary states 

represent 6 resonant terms, one for the 1st, 5th and 7th harmonic 

of the stator voltage in both α and β axes, respectively. It is 

possible to extend the disturbance model by resonant terms for 

higher harmonics of the voltage, but practically they are quite 

well attenuated by the stator-connected filtrating capacitors. 

Therefore, resonant terms are designed for these three 

frequencies in this paper. Eq. (1) shows the augmented plant 

model, which is used for synthesis of the state regulator. 

 
𝑑𝒙

𝑑𝑡
= 𝐀𝐚𝐱 + 𝐁𝐚𝐮 

𝐱𝐟 = [𝑖𝑠𝛼 𝑖𝑠𝛽 𝑖𝑟𝛼 𝑖𝑟𝑠 𝑢𝑠𝛼 𝑢𝑠𝛽] 
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𝐁
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𝐀 = (𝜎𝐿𝑠𝐿𝑟)
−1
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−𝑅𝑠𝐿𝑟 𝑝𝜔𝑚𝐿𝑚
2 𝑅𝑟𝐿𝑚 𝑝𝜔𝑚𝐿𝑟𝐿𝑚 𝐿𝑟 0

−𝑝𝜔𝑚𝐿𝑚
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𝟏𝒎×m – eye matrix, 𝟎𝒎×𝒏 – zero matrix 

ωs – the reference microgrid frequency (1) 

 

Model (1) varies with the changing rotor speed, therefore 

classical linear control methods cannot be used for this system 

straightforward. State regulator can be built for time-invariant 

model with fixed rotor speed (e.g. at the synchronous speed) 

or feedback gain can be adapted to different rotor speeds. In 

the paper it will be shown a novel parameter fixing feedback 

loop, which can be incorporated into the state control. 

Structure of this parameter fixing loop is analogous to 

the decoupling terms in the classical field-oriented control. 

However, its function is slightly different, because it only 

fixes parameters of the model leaving the system state 

variables coupled. State matrix A is decomposed into two 

matrixes, one which is rotor-speed-independent and another 

dependent on the rotor speed, as it is shown in (2). Splitting 

the control action into two state-feedback loops (3) and 

finding such a gain �̃�(𝜔𝑚) that (5) is true, the closed-loop 

system (4) reduces to the parameter-constant model (6). 

Control action generated by the parameter fixing loop (7) is 

obtained by substituting state and control matrix form (1) into 

the procedure (2)-(6). As a result the closed-loop model (6) 

becomes parameter-constant. 

 

 �̇� = (�̅� + �̃�(𝜔𝑚))𝐱 + 𝐁𝐮 (2) 

 𝐮 = �̅� + �̃�(𝜔𝑚) = −�̅�𝒙 − �̃�(𝜔𝑚)𝐱 (3) 

 �̇� = (�̅� − 𝐁�̅�)𝐱 + (�̃�(𝜔𝑚) − 𝐁�̃�(𝜔𝑚))𝐱 (4) 

 (�̃�(𝜔𝑚) − 𝐁�̃�(𝜔𝑚)) = 𝟎 (5) 

 �̇� = (�̅� + 𝐁�̅�)𝐱 (6) 

 �̃�(𝜔𝑚) = [
(𝜔𝑠 − 𝑝𝜔𝑚)𝐿𝑚𝑖𝑠𝛽 + (𝜔𝑠 − 𝑝𝜔𝑚)𝐿𝑚𝑖𝑟𝛽

−(𝜔𝑠 − 𝑝𝜔𝑚)𝐿𝑚𝑖𝑠α − (𝜔𝑠 − 𝑝𝜔𝑚)𝐿𝑚𝑖𝑟α

] (7) 
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B. LQR 

LQR can be applied if the full state is measured and 

the system is controllable (as it is in case of DFIG). It gives 

great regulation capabilities, guarantees stability with 

extraordinary stability margins and requires quite easy tuning 

procedure. However, some remarks should be kept in mind 

when LQR is designed. Firstly, well-known LQR stability 

margins take place only when significant assumptions are met 

[27]. Considerably easier tuning of LQR than eigenvalue 

assignment, might be still very problematic. In [28] it is 

proposed particle swarm optimization PSO to enhance and 

ease LQR tuning procedure, when dozens of weights have to 

be chosen by the designer. Finally, performance of the LQR 

might be worse than a state regulator tuned using robust 

eigenstructure assignment which is obtained by solving linear 

matrix inequalities, as showed in [29]. Nevertheless, the LQR 

is the well-known method with great capabilities which is 

almost not used to control of DFIG ([30], [31] are only papers 

considering this control method for DFIG; none of them 

presents experimental results and stand-alone operation, which 

is the most interesting aspect from the point of view of control 

topology). 

In the paper it is used the LQR which stabilizes 18 states of 

the model (1). Regulator has been obtained using the 

MATLAB optimization procedure lqrd and 18 weights of 

diagonal matrix Q have been chosen based on PSO, which has 

been implemented by the authors. PSO method automates 

LQR tuning procedure, which in classical version is 

an iterative trial-and-error procedure. Simple goal function (8) 

combining an integral of squared error and an integral of 

squared control action has been chosen to represent basic 

control requirements, which are small control error and 

minimum control effort (coefficient 0.001 is chosen 

arbitrarily). 

 

 J(𝐞, 𝐮) = ∑ (𝑒𝑖
2 + 0.001𝑢𝑖

2)𝑛
𝑖=0  (8) 

 

C. Rotor position, rotor speed and stator flux observer 

Structure of MRAS observers used in this paper is adapted 

from rotor position and speed estimator presented in [13]. 

However, a few modifications which improve performance of 

the observer are proposed in the paper. 

Firstly, in order to use the flux model of DFIG in the 

MRAS structure, it is necessary to estimate the stator flux, not 

only precisely, but also fast in order to make PLL regulator 

dominate the observer dynamics. Integrating the electromotive 

force in classical stator flux estimator causes integration of 

voltage measurement offsets. Therefore. many authors 

propose to replace an ideal integrator by a low-pass filter, 

which does not introduce infinite gain for constant signals. 

Drawback of this method is that the low-pass filter makes 

the estimated flux lagging the real one, what causes 

deterioration of the speed and position observer. 

Another flux estimator topology that makes estimation not 

only precise, but also fast, is proposed in this section. There is 

introduced a correction term under the integral of 

electromotive force, which is proportional to a difference of 

voltage model and current model of the stator flux. This 

feedback loop makes the estimator less susceptible to 

parameters identification uncertainties and attenuates 

difference in initial conditions between the estimator and 

machine. Extending feedback by an integral of flux estimation 

error, offsets of voltage measurement can be compensated in 

the flux estimator. Structure of MRAS observer with 

the enhanced flux observer is presented in Fig. 2. 
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Fig. 2. Structure of MRAS observer of rotor position, rotor speed and stator 

flux. 

 

Neglecting voltage drop on the stator resistance, this  

estimator can be described by (9). 

 

 𝜓𝑠
𝑒𝑠𝑡𝑚 =  (𝑢𝑠 + 𝑘𝑝(𝜓𝑠

𝑟𝑒𝑓
− 𝜓𝑠

𝑒𝑠𝑡𝑚) + 𝑘𝑖  (𝜓𝑠
𝑟𝑒𝑓

− 𝜓𝑠
𝑒𝑠𝑡𝑚))

  (9) 

 

Transforming (9) into the s operator domain, (10) is obtained. 

 

𝑠2𝜓𝑠
𝑒𝑠𝑡𝑚 = 𝑠𝑢𝑠 + 𝑠𝑘𝑝𝜓𝑠

𝑒𝑠𝑡𝑚 + 𝑘𝑖𝜓𝑠
𝑒𝑠𝑡𝑚 + 𝑠𝑘𝑝𝜓𝑠

𝑟𝑒𝑓
+

𝑘𝑖𝜓𝑠
𝑟𝑒𝑓

+𝑘𝑖  (10) 

 

Grouping terms in (10), (11) is derived. 

 

 𝜓𝑠
𝑒𝑠𝑡𝑚(𝑠) =

𝑠

𝑠2+𝑘𝑝𝑠+𝑘𝑖
𝑢𝑠(𝑠) + 

−𝑘𝑝𝑠−𝑘𝑖

𝑠2+𝑘𝑝𝑠+𝑘𝑖
𝜓𝑠

𝑟𝑒𝑓(𝑠) (11) 

 

Let’s define (12) and (13). 

 

 𝑇1(𝑠) =
𝑠

𝑠2+𝑘𝑝𝑠+𝑘𝑖
 (12) 

 𝑇2(𝑠) =
−𝑘𝑝𝑠−𝑘𝑖

𝑠2+𝑘𝑝𝑠+𝑘𝑖
 (13) 

 

It is shown in Fig. 3 that the proposed flux estimator has 

band-pass characteristic for the stator voltage (12), whereas it 

has quasi-low-pass characteristic (13) for the reference stator 

flux (calculated from the current model). 

In MRAS rotor position and speed observers, estimation 

error is mostly calculated based on cross product between 

reference and estimated vectors. Cross product is proportional 

to the sine of angle between the vectors and if they are 

collinear, their cross product is zero. However, cross product 

is also proportional to magnitudes of vectors, thus dynamics of 

the observer changes with magnitudes of the synchronized 
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vectors. In order to improve observer performance, it is 

advised to normalize the cross product by dividing it by 

magnitudes of both synchronized vectors. Another method is 

to use function atan2 in combination with cross and dot 

products (14). 

 

 𝑒 = 𝑎𝑡𝑎𝑛 2(𝑢 × 𝑣, 𝑢 ∙ 𝑣) (14) 

∙ - dot product 

× - cross product 

 

 
Fig. 3. Bode diagrams of transfer functions  T1(s) and T2(s) and integrator. 

 

This method has been used in [18], [32] which show that 

atan2 provides linear characteristic of MRAS-PLL observer in 

wider range (-π, π) than cross product, which is approximately 

linear only close to 0. During performed study several error 

calculation methods have been tested in the MRAS-PLL 

structure: 

1. normalized cross product; 

2. limited atan2, (presented in [32]); 

3. linearized atan2, which is a modification of 

the limited atan2. 

These methods, which characteristics are presented in Fig. 

4, have been implemented into the MRAS-PLL observer and 

simulated in order to show differences in observer 

performance. Results of these simulations are presented in Fig. 

5. PI regulator that is incorporated into the PLL has got 

constant proportional and integral gains during these 

simulations, thus the only changing element has been error 

calculation method. All presented methods are scaled such that 

for synchronization angle 𝛼ϵ(−𝜋, 𝜋) error function changes in 

range (-π, π). 

Despite it can be clearly seen that both linearized and 

limited atan2 function give better observer performance, 

advantages of the new error techniques vanish in practical 

implementation of the observer in current/voltage controller. 

Dynamic requirement set before observers are high (very short 

transients and nearly zero steady-state error) and they impose 

using high gains of the regulator. When the observer contains 

high-gain loop, error calculation method does not matter, 

because the observer operates in approximately linear part of 

the cross product characteristic. Nonetheless, a few estimation 

error functions have been tested both in computer simulations 

and laboratory experiment. Obtained experimental results 

mostly identical, so they are not presented here. 
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Fig. 4. Error calculation methods: 1.) scaled cross product, 2.) limited  atan2, 

3.) linearized atan2. 
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Fig. 5. Comparison of MRAS observer performance when different error 

calculation methods are applied; a) estimated rotor speeds, b) estimation 

errors; 1. scaled cross product, 2. limited atan2, 3. linearized atan2, 4. the 
reference rotor speed. 

 

D. Anti-windup of resonant terms 

Anti-windup structure is common in PI regulators and it 

prevents the regulator from integrating error signal under 

regulator output saturation. Neglecting the anti-windup greatly 

degrades system performance and often leads to instability. In 

this paper it is presented application of the anti-windup 

method introduced in [33]. Each of resonant terms can be 

represented by a transfer function (15). 

 

 𝑇𝑟 =
1

𝑠2+𝜔0
2. (15) 

 

Transfer function (15) is undamped, thus when its input has 

frequency equal to the resonant frequency ω0, this resonant 

term acts as amplitude integrator. During state controller 

saturation (not enough DC-link voltage), resonant terms build 

up their state, what creates rough transient state when 

the regulator leaves the saturation area. Replacing (15) by 

(16), it is obtained a resonant term with internal damping. 

 

 𝑇𝑟_𝑑𝑚𝑝𝑑 =
1

𝑠2+2𝜁𝜔0𝑠+𝜔0
2 (16) 

 

Increasing the damping factor ζ when there the output of 

resonant term is over the limit, we can bound state of 

the resonant terms and as a consequence also limit the control 

signal. Crucial issue is to limit ζ to the range (0,1), thus 

the damping stays positive and less than 1 in order to preserve 
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a resonance phenomenon. In Fig. 6 it is presented the output of 

resonant term with the anti-windup structure, which is excited 

by a constant-amplitude 50-Hz-frequency sine wave and under 

the output limit set at 10. 
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Fig. 6. Resonant term with the anti-windup excited by a constant-amplitude 

50-Hz-frequency sine wave under the output limit set at 10. 

 

Stand-alone DFIG has multiple resonant terms operating in 

parallel, which states should be limited when reference rotor 

voltage calculated by the state controller is greater than DC-

link voltage. It is proposed to use low-pass filters LPF1  LPFn 

to decrease speed of damping. In order to damp resonant terms 

for high harmonics faster, it is proposed to increase the gain ki 

in damping loop for respective resonant term. Proposed anti-

windup structure for multiple resonant terms operating in the 

state controller is depicted in Fig. 7. When amplitude of the 

reference rotor voltage is over the limit, the excessive voltage 

increases damping of resonant terms, therefore limiting 

amplitude of their output. Without the anti-windup, 

the designer has to tune the state regulator not to enter 

the saturation region, because winding up of resonant terms 

leads to poor performance of the control system. This problem 

is well depicted by computer simulations results (Fig. 8), in 

which DC-link voltage has been reduced to nearly the value of 

rotor voltage amplitude required for correct operation in 

steady state under the nominal load. When insufficient rotor 

voltage is generated, the controller winds up trying to increase 

the control action. Unfortunately, this leads to unintentional 

oscillations or even to instability. Introduction of anti-windup 

makes possible to significantly increase feedback gain without 

leading to unwanted overshot, therefore it significantly 

improves performance of the system, as shown in Fig. 9. 

III. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation comparison of the selected control methods 

Firstly, in order to create a background for analysis of 

experimental results, there are shown simulation results of the 

method proposed in this paper and another described in [6]. 

Methods comparison based on a simulation test has been 

chosen, because it provides equal conditions for both control 

algorithms and perfect plant model identification. In [6] there 

has been shown stand-alone control method based on PIR 

current controller in the synchronous reference frames with 

superior parallel PI voltage controllers for each symmetric 

sequence and harmonics of the stator voltage. This method 

requires voltage sequence and harmonic decomposition. 

Therefore, performance of this method is mostly dependent on 

bandwidth and attenuation slop of filters used in 

the decomposition. Filters with a narrow bandwidth provide 

zero steady state, but at the same time very slow response on 

load changes. In [6] there has been shown only experimental 

results from the steady state, so it is hard to evaluate what 

dynamic response has the proposed system. 
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Fig. 7. Anti-windup of resonant terms in the DFIG state controller. 
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Fig. 8. Stand-alone DFIG state controller without anti-windup; DC-link 

voltage equals to rotor voltage required for correct operation in steady state 

with nominal load. 
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Fig. 9. Stand-alone DFIG state controller with anti-windup; DC-link voltage 

equals to rotor voltage required for correct operation in steady state with 

nominal load. 
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Simulation results of the control method [6] shown that 

shorter regulation time can be obtained only at the expense of 

huge overshot. Moreover, tuning procedure of the cascade 

control scheme is less intuitive and more cumbersome than 

LQR tuning procedure. Additionally, separately tuned 

regulators in the cascade control structure with multiple 

control paths do not guarantee stability of the overall system, 

whereas LQR does. In Fig. 10 and Fig. 11 there is presented 

step loading of stand-alone DFIG. Initially, the generator has 

not been loaded and at t=0.4s it has been connected to the 

stator a diode rectifier loaded by a 90Ω resistor. Control 

methods have been tuned for no-load operation, as it is the 

most difficult situation due to small damping. 

B. Laboratory rig 

Presented sensorless control structure of stand-alone DFIG 

has been evaluated in the laboratory rig containing 7.5kW 

wound rotor induction machine (Rs=0.43Ω, Rr=0.71Ω, 

Ls=132mH, Lr=132mH, Lm=120mH, p=2) driven by an AC 

motor, which is controlled by a commercial motor controller. 

DFIG is connected from the stator side to a capacitor bank, 

which delivers a part of magnetizing current. These capacitors 

also filtrate voltage high harmonics, therefore active 

compensation is only necessary for the 5th and 7th harmonic of 

stator voltage. Load-side converter does not compensate 

the high harmonics and negative sequence of load current, and 

its only aim is to stabilize the DC-link voltage. Load-side 

converter is controlled using the classical synchronous 

reference frames control with cascaded PI regulators, and its 

performance and compensation capabilities are not considered 

in this paper. Unbalanced load is obtained by connecting 45Ω 

resistors between two lines. Nonlinear load is a 3-phase diode 

bridge connected to a 45Ω resistor. All tests have been 

performed without using the encoder in DFIG control, but 

the rotor position and speed have been estimated using 

the proposed observer. Encoder mounted on the machine shaft 

has been used only as a source of reference position signal 

during observer evaluation. 

In the conducted experiment it has been tested both steady 

state and dynamic responses on various situations. Load used 

in the experiment is a mix of unbalanced load and nonlinear 

one. It is an important remark, because in the other papers 

(e.g. [6]) there are tested two separate control algorithms, one 

designed for unbalanced load and the other for nonlinear load. 

Presented control method using the LQR can regulate 

the stator voltage in both loading conditions. 

In Fig. 12 it is showed steady-state operation of DFIG 

system with unbalanced and nonlinear load and the FFT of 

stator voltage. Considering that the FFT waveform is 

presented in the logarithmic scale, it is clearly seen that the 5th 

and 7th voltage harmonics are well regulated. Additionally, 

the 11th and 13th voltage harmonics are marked in the FFT to 

show that, even though they are not completely cancelled, 

their content is negligibly low. 

In Fig. 13 and Fig. 14 there are shown step loading and 

unloading, respectively. Changing of loading conditions cause 

transient state in the observer, which affects the state 

regulator. Nevertheless, the stator voltage dip lasts about 

60ms, which is satisfying considering that the generator has to 

compensate also voltage high harmonics. In Fig. 15 there is 

shown DFIG operation under unbalanced and nonlinear load 

and changing rotor speed. At the top of this figure it is shown 

broad time span and in the bottom a zoom of selected narrow 

time range. 
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Fig. 10. Simulation results of the proposed LQR control with resonant terms 

for stand-alone DFIG supplying nonlinear load during step loading (transient). 
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Fig. 11. Simulation results of the control method proposed in [6] for stand-

alone DFIG supplying nonlinear load during step loading (transient).  
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Fig. 12. Experimental results of stand-alone DFIG operation under both 

unbalanced and nonlinear load in the steady state. 
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Fig. 13. Experimental results of stand-alone DFIG during unbalanced and 

nonlinear step loading. 
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Fig. 14. Experimental results of stand-alone DFIG during unbalanced and 

nonlinear step unloading. 

 

In Fig. 16 there is shown DFIG system start during which 

the observer has to catch the rotor position firstly. Reference 

stator voltage dynamics is limited by a reference prefilter in 

order to slow down state regulator response while the observer 

is not locked at real rotor position. It is shown that presented 

control algorithm can easily start without exceeding current 

limits. Start of sensorless system is a problematic case, 

because as long as the observer does not provide precisely 

the rotor position, the state regulator cannot operate as 

designed. It is also the reason why state regulator cannot have 

very high feedback gains. 

Presented experimental results are satisfactory taking into 

account hard operation conditions of sensorless DFIG system 

supplying simultaneously nonlinear and unbalanced loads. 

Presented state controller quite well cooperates with rotor 

position and speed observer, which in steady state has little 

impact on the stator voltage regulation and acceptable 

influence during transients. 

ir

us

il

ωm_est 

φm_est 

φm 
 

Fig. 15. Experimental results of stand-alone DFIG operation under both 
unbalanced and nonlinear load and changing rotor speed from subsynchronous 

to supersynchronous. 
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Fig. 16. Experimental results of start-up of the rotor position observer and 

state regulator. 
 

IV. CONCLUSIONS 

Presented method of DFIG voltage control is competitive to 

the classical MSRF structures and capable to operate in 

the sensorless mode without significant degradation of 

performance. Comparison of these two approaches based on 

experimental results can be misleading due to high 

dependency of overall control system performance on 

the feedback gain obtained by tuning. Nonetheless, the linear-

quadratic regulator works well in the sensorless DFIG system 

supplying both nonlinear and unbalanced loads at the same 

time, what has been verified both in the simulations and 

laboratory experiment. On the other hand, the classical MSRF 

control structure has given much worse performance in 
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the simulation comparison. State feedback regulation can be 

more often used in DFIG control due to both theoretical 

advantages (guaranteed stability, great stability margins) and 

practical ones (easier tuning procedure). 
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